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1 Abstract

We will look at a rigorous approach for considering infinitesimals: quan-
tities that are infinitely small. The theory that we will consider is synthetic
calculus, which calls for a constructive approach to mathematics. Because
this may lead to some discomfort, we will actually look at models for syn-
thetic calculus, which means that we are going to construct the infinitesi-
mals as actual, classical objects. This way, our thinking can remain com-
pletely classical, and we will see how the constructive logic arises from an
external, classical point of view.

2 Loci

By C∞(Rd) we denote the (commutative) ring of smooth functions from
Rd to R, with the operations defined pointwise.

An ideal I in the ring C∞(Rd) is an additive subgroup satisfying that for
every f ∈ I and every g ∈ C∞(Rd), f · g ∈ I. The ideal generated by an
arbitrary subset J ⊂ C∞(Rd) is the smallest ideal containing J. We write
(g) for the ideal generated by a function g ∈ C∞(Rd).

Given an ideal I ⊂ C∞(Rd) we can consider the quotient ring C∞(Rd)/I,
where the operations are defined on the representatives.
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Every ring of the form C∞(Rd)/I induces a so-called locus, which is just
the ring itself, except that we now write it as ℓ

(
C∞(Rd)/I

)
.

A morphism from a locus ℓ
(
C∞(Rd)/I

)
to a locus ℓ(C∞(Rm)/J) is an equiv-

alence class [ϕ] of smooth maps ϕ : Rd → Rm such that

∀ f ∈ J, f ◦ ϕ ∈ I.

where the equivalence relation is defined by ϕ ∼ ψ if for j = 1, . . . , m,

ϕj − ψj ∈ I.

We will sometimes denote the set of morphisms from a locus ℓ(A) to a
locus ℓ(B) by

Hom(ℓ(A) , ℓ(B)).

Proposition 2.1. Given two morphisms

[ψ] : ℓ
(

C∞(Rd)/I
)
→ ℓ(C∞(Rm)/J)

[ϕ] : ℓ(C∞(Rm)/J) → ℓ(C∞(Rn)/K)

the equivalence class [ϕ ◦ψ] is itself a morphism from the locus ℓ
(
C∞(Rd)/I

)
to the locus ℓ(C∞(Rn)/K). Moreover, this equivalence class is inde-
pendent of the particular representatives ψ and ϕ, and is called the
composition of [ϕ] and [ψ], and is denoted by [ϕ] ◦ [ψ].

Proof. First note that for all f ∈ C∞(Rn) such that f ∈ K, we have that

f ◦ ϕ ∈ J

and therefore
f ◦ ϕ ◦ ψ ∈ I

hence [ϕ ◦ ψ] is a morphism.

Assume ϕ ∼ ϕ̃ and ψ ∼ ψ̃. We need to show that [ϕ ◦ ψ] = [ϕ̃ ◦ ψ̃]. It
suffices to show that [ϕ ◦ ψ] = [ϕ̃ ◦ ψ] and [ϕ ◦ ψ] = [ϕ ◦ ψ̃].
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Let j ∈ {1, . . . , n}. Note that

(ϕ ◦ ψ)j − (ϕ̃ ◦ ψ)j = (ϕj − ϕ̃j) ◦ ψ ∈ I

because [ψ] is a morphism and ϕj − ϕ̃j ∈ J.

By Hadamard’s lemma, there exist smooth functions q1, . . . , qm : Rm ×
Rm → R such that for all x, y ∈ Rm,

ϕj(x)− ϕj(y) =
n

∑
i=1

(xi − yi)qi(x, y).

Therefore, for all x ∈ Rd

ϕj(ψ(x))− ϕj(ψ̃(x)) =
m

∑
i=1

(ψi(x)− ψ̃i(x))qi(ψ(x), ψ̃(x)).

It follows that ϕj ◦ ψ − ϕj ◦ ψ̃ ∈ I.

These notes try to not rely on category theory, but for readers familiar it
may be useful to once in a while connect to these concepts. A category
consists of a collection of objects, for each pair of objects a collection of
so-called morphisms, for every object an identity morphism of the object
to itself and an associative composition operation for morhpisms.

Definition 2.2 (The category of loci L). The objects in the category of
loci L are quotient rings of the form C∞(Rd)/I for some d ∈ N0 and
an ideal I ⊂ C∞(Rd). Such an object is denoted by ℓ

(
C∞(Rd)/I

)
.

Morphisms in this category from an object ℓ
(
C∞(Rd)/I

)
to an object

ℓ(C∞(Rm)/J) are equivalence classes [ϕ] of smooth maps ϕ : Rd →
Rm such that

∀ f ∈ J, f ◦ ϕ ∈ I

where the equivalence relation is defined by ϕ ∼ ψ if for j = 1, . . . , m,

ϕj − ψj ∈ I.
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3 Dictionary of spaces

We present a small dictionary of some spaces in synthetic calculus. Some
are analogs of classical spaces, like the real numbers, and others are new,
such as the first-order infinitesimals.

Although I tried to write these notes so you don’t need to know what
presheaves are, it is nonetheless going to be useful to start using the word
presheaves for the objects that we construct.

As a bit of motivation, it is useful to embed the category of loci into a
larger category (the category of presheaves) because some constructions
of presheaves are possible that are not always possible for loci: although
some function spaces made from loci are again loci, in general they are
just presheaves. A presheaf is called representable if it is the Yoneda em-
bedding of a locus, so a different way of saying the last sentence is that
the presheaf of functions from one representable presheaf to another rep-
resentable presheaf is not necessarily representable.

The embedding from the category of loci to the category of presheaves is
called the Yoneda embedding. The Yoneda embedding assigns to a locus
ℓ(A) the functor

Y(ℓ(A)) := Hom(−, ℓ(A))

which is the functor of morphisms to ℓ(A). By the Yoneda lemma, the
Yoneda embedding Y is a fully faithful embedding, which basically means
that L is just a subcategory of the category of presheaves on L.

Here is the dictionary:

i. The smooth line (or the reals):

R := Y(ℓ(C∞(R))) := Hom(−, ℓ(C∞(R))).

ii. The point:
1 := Y(ℓ(C∞(R)/(x))).

iii. The first-order infinitesimals:

D := Y(ℓ
(

C∞(R)/(x2)
)
).
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iv. The (strictly) positive reals:

R>0 := Y
(
ℓ
(

C∞(R2)/(y1>0(x)− 1)
))

where 1A stands for the characteristic function of a set A.

v. The nonpositive reals:

R≤0 := Y
(
ℓ
(
C∞(R)/m∞

≤0
))

where m∞
≤0 of functions that are flat on (−∞, 0].

4 Analogs of set-theoretic concepts

We first define elements of general presheaves, but you are invited to skip
this definition and just read what elements of representable presheaves
are.

Definition 4.1 (Element). A (restricted generalized) element of a presheaf
F is a morphism (i.e. a natural transformation) from some presheaf
Y(ℓ

(
C∞(Rd)/I

)
) to F. Here ℓ

(
C∞(Rd)/I

)
is called the stage of the

element. We will also use the terminology an element of F at stage
ℓ
(
C∞(Rd)/I

)
as an element with domain ℓ

(
C∞(Rd)/I

)
.

The next proposition characterizes elements of representable presheaves.

Proposition 4.2 (Element of a (Yoneda embedding of) a locus). A (re-
stricted generalized) element of a representable presheaf Y(ℓ(C∞(Rm)/J))
corresponds to a morphism

ℓ
(

C∞(Rd)/I
)
→ ℓ(C∞(Rm)/J) .

Here ℓ
(
C∞(Rd)/I

)
is called the stage of the element.
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Definition 4.3 (Restriction of an element). Let ξ be an element of F at
stage ℓ(A), and let α : ℓ(B) → ℓ(A), then the restriction of ξ along α,
denoted by ξ|α, is the element of F at stage ℓ(B) given by ξ ◦ α.

Definition 4.4 (Product). The product of two loci ℓ
(
C∞(Rd)/I

)
and

ℓ(C∞(Rm)/J) is given by ℓ
(
C∞(Rd+m)/(I, J)

)
, where (I, J) is the ideal

(I ◦ π1 + J ◦ π2) where π1 : Rd+m → Rd and π2 : Rd+m → Rm are the
projection maps.

The projections of ℓ
(
C∞(Rd+m)/(I, J)

)
to the first and second compo-

nents are given by [π1] and [π2] respectively.

Definition 4.5. Let ℓ(A) = ℓ
(
C∞(Rd)/I

)
, ℓ(B) = ℓ(C∞(Rm)/J) and

ℓ(C) = ℓ(C∞(Rn)/K). Then an element of the function space

Y(B)Y(C)

at stage ℓ(A) is a morphism

ℓ(A)× ℓ(C) → ℓ(B) .

The evaluation of a morphism f of Y(B)Y(C) at stage ℓ(A) in an ele-
ment c of Y(ℓ(C)) at stage ℓ(A), is given by

f ◦ (idℓ(A), c).

The restriction of a morphism f of Y(B)Y(C) at stage ℓ(A) along α :
ℓ(E) → ℓ(A) is defined by

f |α := f ◦ (α, idℓ(C)).

5 Interpretation of the logical language

We will now try to explain how to read logical statements. As a first ex-
ample, if we have a pair of elements a, b of R at stage ℓ(A), we could make
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the statement that
a · b = b · a

Moreover, this statement is valid for these elements, and we express this
by saying that a · b = b · a is satisfied at stage ℓ(A). We write this as
ℓ(A) ⊩ a · b = b · a.

Below, the variables F1, F2, . . . denote presheaves.

i. Often if we have a collection of variables at a given stage ℓ(A), say
a1, . . . , ad, then we know what it means for some formula S = ϕ(a1, . . . , ad)
to hold. We call this: the statement S is satisfied at stage ℓ(A) and
write this as ℓ(A) ⊩ S. The relation ℓ(A) ⊩ S is really defined induc-
tively, as we try to describe below.

ii. We say a statement S holds if for every ℓ(A) ∈ L, ℓ(A) ⊩ S.

iii. The notation (or rather the subfunctor of F1 × · · · × Fn)

{(x1, . . . , xn) ∈ F1 × · · · × Fn | φ(x1, . . . , xn)}

is defined through:

for all ℓ(A) ∈ L and all elements a1 of F1, . . . , an of Fn all at stage
ℓ(A),[

(a1, . . . , an) ∈ {(x1, . . . , xn) ∈ F1 × · · · × Fn | φ(x1, . . . , xn)}

at stage ℓ(A) if and only if

ℓ(A) ⊩ φ(a1, . . . , an)
]

iv.
ℓ(A) ⊩ φ(a1, . . . , an) ∧ ψ(a1, . . . , an)

if and only if both
ℓ(A) ⊩ φ(a1, . . . , an)

and
ℓ(A) ⊩ ψ(a1, . . . , an)
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v.
ℓ(A) ⊩ φ(a1, . . . , an) ∨ ψ(a1, . . . , an)

if either
ℓ(A) ⊩ φ(a1, . . . , an)

or
ℓ(A) ⊩ ψ(a1, . . . , an)

vi.
ℓ(A) ⊩ ∃x ∈ F, φ(x, a1, · · · , an)

if and only if there exists an a : ℓ(A) → F such that

ℓ(A) ⊩ φ(a, a1, . . . , an)

vii.
ℓ(A) ⊩ φ(a1, . . . , an) =⇒ ψ(a1, · · · , an)

if and only if for every locus ℓ(B) and every f : ℓ(B) → ℓ(A) in L, if

ℓ(B) ⊩ φ(a1| f , . . . , an| f )

then
ℓ(B) ⊩ ψ(a1| f , . . . , an| f ).

viii.
ℓ(A) ⊩ ∀x ∈ F, φ(x, a1, · · · , an)

if and only if for every locus ℓ(B) and every f : ℓ(B) → ℓ(A) in L

and every b : ℓ(B) → F,

ℓ(B) ⊩ φ(b, a1| f , . . . , an| f )

Theorem 5.1 (Functoriality of ⊩). If

ℓ(A) ⊩ φ(a1, . . . , an)

and α : ℓ(E) → ℓ(A) is a morphism, then

ℓ(E) ⊩ φ(a1|α, . . . , an|α)
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6 Exercises

Exercise 6.1. Prove that a real (i.e. an element of R) at stage ℓ
(
C∞(Rd)/I

)
is an equivalence class ϕ mod I.

Exercise 6.2. Prove that an element of the point (i.e. an element of the
representable presheaf 1) at stage ℓ(C∞(Rn)/I) is the equivalence class (0
mod I).

Exercise 6.3. Prove that a first-order infinitesimal at stage ℓ
(
C∞(Rd)/I

)
is

an equivalence class ϕ mod I with φ2 ∈ I.

Exercise 6.4. Prove that D = {x ∈ R | x2 = 0}.

Exercise 6.5. Try to prove that for every x ∈ D, x = 0. What goes wrong?

Exercise 6.6. Try to prove that there exists an element x ∈ D such that
x ̸= 0. What goes wrong?

Exercise 6.7. Prove that

∀x, y ∈ R, x · y = y · x,

i.e., prove that for every stage ℓ(A) ∈ L and every pair of elements a, b ∈ R
at stage ℓ(A),

a · b = b · a.

Exercise 6.8. Prove that an element of RR at stage ℓ(C∞(Rm)/I) is an
equivalence class F mod (I, (0)) with F : Rm+1 → R smooth.

Exercise 6.9. Prove that an element of RD at stage ℓ
(
C∞(Rd)/I

)
is an

equivalence class ϕ mod (I, (x2)) where ϕ : Rd+1 → R is a smooth map.

In the next two exercises, we will prove the so-called Kock-Lawvere ax-
iom, namely

∀ f ∈ RD, ∃!(a, b) ∈ R × R, ∀x ∈ D, f (x) = a + b · x.
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Exercise 6.10. Prove that

∀ f ∈ RD, ∃(a, b) ∈ R × R, ∀x ∈ D, f (x) = a + b · x.

i. Verify that we need to show that for every locus ℓ(A) and every ele-
ment f of RD at stage ℓ(A),

ℓ(A) ⊩ ∃(a, b) ∈ R × R, ∀x ∈ D, ( f (x) = a + b · x)

ii. Let ℓ(A) = ℓ
(
C∞(Rd)/I

)
be an arbitrary locus. Verify that it suffices

to show that there exists an element (a, b) ∈ R× R at stage ℓ(A) such
that

∀x ∈ D, f (x) = a + b · x.

iii. Make a suitable choice for (a, b) at stage ℓ(A) (or delay this...)

iv. Verify that it suffices to show that for every locus ℓ(E) and every
α : ℓ(E) → ℓ(A) and every c : ℓ(E) → D,

ℓ(E) ⊩ ( f |α)(c) = (a|α) + (b|α) · c.

v. Let ℓ(E) be an arbitrary locus and let α : ℓ(E) → ℓ(A) and c : ℓ(E) →
D. Verify that it suffices to show that

ℓ(E) ⊩ f ◦ (α, idD) ◦ (idℓ(E), c) = (a ◦ α) + (b ◦ α) · c.

vi. Verify that it suffices to show that

ℓ(A)× D ⊩ f ◦ (p1, idD) ◦ (idℓ(E), p2) = (a ◦ p1) + (b ◦ p1) · p2,

where p1 and p2 are the projections to ℓ(A) and D respectively.

vii. Prove that

ℓ(A)× D ⊩ f ◦ (p1, idD) ◦ (idℓ(E), p2) = (a ◦ p1) + (b ◦ p1) · p2,

where p1 and p2 are the projections to ℓ(A) and D respectively.

Exercise 6.11. Prove that

∀(a, b, u, v) ∈ R4, (∀x ∈ D, a + b · x = u + v · x) =⇒ (a = u ∧ b = v).
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